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Problem Formulation

Consider the wave equation
∂2
t u(x , t)− c(x)2∆u(x , t) = 0 in M × (0,∞)

u(x , 0) = ut(x , 0) = 0 in M

u(x , t) = f (x , t) in ∂M × (0,∞)

where M ⊂ Rn is a bounded domain with smooth boundary ∂M, c(x)
is a strictly positive smooth wave speed and f is Dirichlet boundary
condition (control).

We denote the solution of the wave equation by uf (x , t) = u(x , t)
and define the Dirichlet-to-Neumann operator, which models the
boundary measurements,

Λc,T : f 7→ ∂uf

∂ν
|∂M×(0,T ), T > 0.

Λc,T is continuous H1
cc(∂M × (0,T ))→ L2(∂M × (0,T )), where

H1
cc(∂M × (0,T )) = {f ∈ H1(∂M × (0,T )); f (x , 0) = 0}
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Problem Formulation

Inverse problem: Reconstruct the wave speed c(x) on M from the
knowledge of the Dirichlet-to-Neumann operator Λc,T .

Sufficient large T : By the finite speed of propagation for the wave
equation, if there is x0 ∈ M such that T < 2d(x0, ∂M), where d is
the distance function of the Riemannian manifold (M, c−2dx2), then
Λc,T can not contain any information about c(x0).

Uniqueness: The inverse problem is uniquely solvable, i.e.

Λc,T = Λc̃,T =⇒ c(x) = c̃(x),

for T satisfying T > max
x∈M

2d(x , ∂M). This can be proved by either

using the boundary control (BC) method or by using the complex
geometric optics (CGO) solutions. However, these methods normally
only give logarithmic type stability.
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Literature on Stability

Hölder-type stability results were established in [Stefanov-Uhlmann
98, 05], [Bellassoued-Dos Santos 11] based on the simplicity
assumption on the geometry. Especially the latter gives an explicit
Hölder exponent 1/2, however, the technique does not give a global
reconstruction method.

Hölder-type stability with an exponent strictly better than 1/2 allows
an inverse problem to be solved locally by the nonlinear Landweber
iteration [de Hoop-Qiu-Scherzer 12]. Moreover, the convergence rate
of the iteration is linear if and only if the problem is Lipschitz stable.

For recover the potential of the wave equation from the DN map,
Hölder stability [Sun 90], “almost Lipschitz” stability [Bao-Yun 09].

If |∆u(x , 0)| 6= 0, then Lipschitz-type stability can be obtained by
using a single measurement: method by Carleman estimates that was
originated in [Bukhgeim-Klibanov 81].
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Hölder-type stability results were established in [Stefanov-Uhlmann
98, 05], [Bellassoued-Dos Santos 11] based on the simplicity
assumption on the geometry. Especially the latter gives an explicit
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Main Result

Theorem (Reconstruction Formula)

Suppose the wave equation is exact controllable in time T > 0. Define the
harmonic exponential functions

φξ,η(x) = e(−η+iξ)·x/2, ψξ,η(x) = e(η+iξ)·x/2,

where ξ, η ∈ Rn, |ξ| = |η| and ξ · η = 0. Then

F(c−2)(ξ) = (K (Λc,2T )†B(Λc,T )φξ,η,B(Λc,T )ψξ,η)L2(∂M×(0,T )),

where K (Λc,2T ) and B(Λc,T ) are operators that can be represented in
terms of the Dirichlet-to-Neumann operator and K † denotes the
pseudoinverse operator of K .
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Main Result

Theorem (Lipschitz Stability)

Suppose that the wave equation is stably controllable in T > 0, or the
Riemannian manifold (M, c−2dx2) admits a strictly convex function that
has no critical points. Let M ⊂ B(0,R) for some R > 0 and
c(x) ≥ εU > 0, for all x ∈ M and c ∈ U. Then there is C > 0 depending
on M, T , c, εU such that for all c̃ ∈ U

|F(c̃−2 − c−2)(ξ)| ≤ Ce2R|ξ|‖Λc̃,2T − Λc,2T‖∗, ξ ∈ Rn,

where for Σ = ∂M × (0,T )

‖Λc,2T‖∗ := ‖K (Λc,2T )‖L2(Σ)→L2(Σ) + ‖Λc,T‖H1
cc (Σ)→L2(Σ).

Remark: ‖ · ‖∗ is indeed a norm.
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Exact Controllability and Continuous Observability

We recall the wave equation is called exactly boundary controllable
from Γ ⊂ ∂M in time T > 0 if the following control-to-solution map
is surjective:

f 7→ (uf (T ), uf
t (T )) : L2(∂M × (0,T ))→ L2(M)× H−1(M)

It is well-known that, by duality, the exact boundary controllability is
equivalent to the continuous observability inequality of the dual
problem. That is, there exists a constant Cobs > 0, such that

‖(w0,w1)‖H1
0 (M)×L2(M) ≤ Cobs‖

∂w

∂ν
‖L2(Γ×(0,T ))

where w is the solution of the dual problem
∂2
t w(x , t)− c2(x)∆w(x , t) = 0 in M × (0,T )

w(x ,T ) = w0(x), wt(x ,T ) = w1(x) in M

w = 0 in ∂M × (0,T )
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Stable Observability

Definition

We say that the wave equation is stably controllable from Γ ⊂ ∂M in time
T > 0, for c ∈ U, if there is a unified Cobs > 0 such that for all c ∈ U the
solutions of the wave equations satisfy the continuous observability
inequality ‖(w0,w1)‖H1

0 (M)×L2(M) ≤ Cobs‖∂w∂ν ‖L2(Γ×(0,T )).

Theorem

Assume that there is a strictly convex function ` ∈ C 3(M) with respect to
the metric tensor c−2dx2, and that ` has no critical points. Let U be
bounded in C 2(M) and let Γ ⊂ ∂M contain {x ∈ ∂M; ∇`(x) · ν ≥ 0}.
Then there is a neighborhood V of c in C 1(M) and T > 0 such that the
wave equations are stably controllable for the wave speeds in the set
U ∩ V , from Γ in time T .
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Control to Solution Map W

We now consider the operator which maps the control f to the
solution u at time T :

Wf := uf (T ), W : L2(∂M × (0,T ))→ L2(M).

Then W ∗φ = ∂w
∂ν |∂M×(0,T ) with w being the solution of the dual

problem with w0 = 0 and w1 = φ.

Both W and W ∗ are bounded linear operators with the norm
‖W ‖ = ‖W ∗‖ ≤ C (c).

If the wave equation is exactly controllable, i.e., W is surjective, then
we can consider the pseudoinverse of W : W †φ gives the minimum
norm control that solves the control equation Wf = φ.

By the observability inequality we can get ‖W †‖ = ‖(W †)∗‖ ≤ Cobs

and ‖(W ∗W )†‖ ≤ C 2
obs .
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Blagoveščenskĭı Type Identities

Lemma

Let f , h ∈ C∞0 (∂M × (0,T )). Then

(uf (T ), uh(T ))L2(M;c−2(x)dx) = (f ,K (Λc,2T )h)L2(∂M×(0,T )).

where the operator K (Λc,2T ) is defined by

K (Λc,2T ) := RΛc,TRJΘ− JΛc,2TΘ,

where R is the time reversal on (0,T ), Θ is the extension by zero from
(0,T ) to (0, 2T ) and

Jf (t) :=
1

2

∫ 2T−t

t
f (s)ds, f ∈ L2(0, 2T ), t ∈ (0,T ).

• [Bingham-Kurylev-Lassas-Siltanen 08]
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Blagoveščenskĭı Type Identities

Lemma

Let f ∈ C∞0 (∂M × (0,T )) and let φ be a harmonic function. Then

(uf (T ), φ)L2(M;c−2(x)dx) = (f ,B(Λc,T )φ)L2(∂M×(0,T )).

where the operator B(Λc,T ) is defined by

B(Λc,T ) := RΛc,TRIT0 − IT1,

Tj , j = 0, 1, are the first two traces on ∂M, that is T0φ = φ|∂M and

T1φ = ∂φ
∂ν |∂M , and

If (t) :=

∫ T

t
f (s)ds, f ∈ L2(0,T ), t ∈ (0,T ).
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Inner products of harmonic functions

The first identity implies that for f , h ∈ C∞0 (∂M × (0,T ))

(f ,W ∗Wh)L2(∂M×(0,T )) = (uf (T ), uh(T ))L2(M;c−2dx)

= (f ,Kh)L2(∂M×(0,T )).

Thus K = W ∗W extends as a continuous operator on
L2(∂M × (0,T )).

On the other hand, the second identity implies that for
f ∈ C∞0 (∂M × (0,T )) and harmonic φ ∈ C∞(M)

(f ,W ∗φ)L2(∂M×(0,T )) = (uf (T ), φ)L2(M;c−2dx)

= (f ,Bφ)L2(∂M×(0,T )).

Thus W ∗φ = Bφ for a harmonic function φ.
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Inner products of harmonic functions

Notice that WW † is the identity on L2(M) since W is surjective. We
thus have for any harmonic functions φ and ψ

(φ, ψ)L2(M;c−2dx) = (WW †φ, ψ)L2(M;c−2dx)

= (W †φ,W ∗ψ)L2(M;c−2dx)

= ((W ∗W )†W ∗φ,W ∗ψ)L2(M;c−2dx)

= (K †Bφ,Bψ)L2(∂M×(0,T )),

By taking φ = φξ,η(x) = e(−η+iξ)·x/2 and ψ = ψξ,η(x) = e(η+iξ)·x/2,
then we have

F(c−2)(ξ) = (φ, ψ)L2(M;c−2(x)dx)

= (K †Bφξ,η,Bψξ,η)L2(∂M×(0,T )).
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Stability Estimate

Therefore for harmonic functions φ, ψ and another speed c̃ ∈ U

|(φ, ψ)L2(M;c̃−2dx) − (φ, ψ)L2(M;c−2dx)|

= |(K †Bφ,Bψ)− (K̃ †B̃φ, B̃ψ)|

≤ |(K †Bφ,Bψ)− (K̃ †Bφ,Bψ)|+ |(K̃ †Bφ,Bψ)− (K̃ †Bφ, B̃ψ)|

+ |(K̃ †Bφ, B̃ψ)− (K̃ †B̃φ, B̃ψ)|

where we have omitted writing L2(∂M × (0,T )) as a subscript.
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Stability Estimate

Estimate each difference, recall the definition of K and B

|(K †Bφ,Bψ)− (K̃ †Bφ,Bψ)|

= |((K † − K̃ †)Bφ,Bψ)|

≤ 3C 4
obs‖W ∗‖2

L2(M)→L2(Σ)‖K̃ − K‖L2(Σ)‖φ‖L2(M)‖ψ‖L2(M)

[Izumino 83] If A,B ∈ L(H,K ) with closed ranges, then

‖B† − A†‖ ≤ 3 max {‖B†‖2, ‖A†‖2}‖B − A‖.
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Stability Estimate

|(K̃ †Bφ,Bψ)− (K̃ †Bφ, B̃ψ)| ≤ |(K̃ †Bφ, (B − B̃)ψ)|

≤ C 2
obs‖W ∗‖L2(M)→L2(Σ)C‖Λ̃T − ΛT‖H1

cc (Σ)→L2(Σ)‖φ‖L2(M)‖ψ‖C1(∂M)

|(K̃ †Bφ, B̃ψ)− (K̃ †B̃φ, B̃ψ)| ≤ |((B − B̃)φ, K̃ †B̃ψ)|

≤ Cobs‖Λ̃T − ΛT‖H1
cc (Σ)→L2(Σ)‖φ‖C1(∂M)‖ψ‖L2(M).
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Stability Estimate

We hence have that there is a constant C = C (Cobs , c , εU ,M,T ) > 0
such that for c̃ ∈ U and harmonic φ, ψ

|(φ, ψ)L2(M;c̃−2dx) − (φ, ψ)L2(M;c−2dx)|

≤ C
(
‖K̃ − K‖L2(Σ) + ‖Λ̃T − ΛT‖H1

cc (Σ)→L2(Σ)

)
‖φ‖C1(M)‖ψ‖C1(M)

= ‖Λ̃2T − Λ2T‖∗‖φ‖C1(M)‖ψ‖C1(M)

Let R > 0 such that M ⊂ B(0,R), again by taking the harmonic
functions

φ(x) := e(−η+iξ)·x/2, ψ(x) := e(η+iξ)·x/2.

Then we get

|F
(
c̃−2 − c−2

)
(ξ)| = |(φ, ψ)L2(M;c̃−2dx) − (φ, ψ)L2(M;c−2dx)|

≤ Ce2R|ξ|‖Λ̃2T − Λ2T‖∗ c̃ ∈ U, ξ ∈ Rn.
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Summary

Reconstruct wave speed from Dirichlet-to-Neumann map: combine
the BC method and the CGO solutions method.

Exact controllability ⇒ Reconstruction formula.

Stable controllability ⇒ Local Lipschitz-type stability.

Stability estimate works for low frequency.
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Thank you!
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